Currently only ECA lab updated fully.

PDC LAB


  • Click below links to download full manual of Pulse and Digital circuit lab(PDC) manual:
                 1.Click to read online      

                  2.click to download 
                                                                                                                                                                                


S.No.
Name of the Experiment
1
Linear wave shaping (Differentiator and Integrator)
2
Non-Linear wave shaping (Clippers)
3
Non-Linear wave shaping (Clampers)
4
Transistor as a switch
5
Study of Logic gates
6
Study of Flip-Flops
7
Sampling Gates
8
Astable Multivibrator
9
Monostable Multivibrator
10
Bistable Multivibrator
11
Schmitt Trigger
12
UJT Relaxation Oscillator
13
Bootstrap Sweep Circuit

         EXPERIMENT NO:-1LINEAR WAVE SHAPING     (Differentiator and integrator)                          

AIM:
1.   To study and observe the characteristics of Differentiator and Integrator using RC Circuit with different input frequencies.

EQUIPMENT REQUIRED:
1. RC and RL Trainer Kit
2. Dual trace CRO
3. Connecting wires
THEORY:
PROCEDURE: -
RC Differentiator
1. Connect the circuit as shown in figure 1.
2. Calculate the time constant of the circuit by connecting one of the Capacitor provided (T=RC),
3. Observe the output wave forms for different input frequencies (RC<T, RC=T, RC«T, RC>T) as shown in the tabular column 1 for different time constants.
4. Plot the graphs for different input and output waveforms,
RC integrator
1. Connect the circuit, as shown in figure 2.
2. Calculate the time constant of the circuit by connecting one of the Capacitor provided.
3. Observe the output wave forms for different input frequencies (RC<T, RC=T, RC«T, RC>T) as shown in the tabular column 2 for different time constants.
4. Plot the graphs for different input and output waveforms.
PRECAUTIONS: -
1.Avoid loose and wrong connections.
2.Aviod eye contact errors while taking the observations in CRO.
RESULT:
The characteristics of the Differentiator and Integrator are verified.
CIRCUIT DIAGRAM:
RC DIFFERENTIATOR:



TABULAR COLUMN 1:

R
C
T=RC
T
Condition
100 KΩ
0.01μF
1 ms
5 ms
RC < T
100 KΩ
0.01μF
1 ms
1 ms
RC = T
100 KΩ
0.0047μF
0.47 ms
10 ms
RC < < T
100 KΩ
0.01μF
1 ms
0.1 ms
RC > T






TABULAR COLUMN 2:

R
C
T=RC
T
Condition
100 KΩ
0.01μF
1 ms
10 ms
RC << T
100 KΩ
0.01μF
1 ms
1 ms
RC = T
100 KΩ
0.01μF
1 ms
100μs
RC >> T



EXPECTED WAVEFORMS:
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

                   EXPERIMENT NO:-2

NON LINEAR WAVE SHAPING CLIPPERS 

AIM: -
          To study and observe the waveforms  of different clippers using
           Diodes with various reference voltages .

EQUIPMENT REQUIRED: -

1.   Trainer kit.
2.      Dual trace CRO.
3.   Resister-1kΩ,Diode-IN4007
4.      Connecting wires.
PROCEDURE: -
1. Connect the circuit as shown in figures (1-5)
2. Switch on the power supply and adjust the output of AF generator
    to 8V (peak to peak)
3. Observe the in put and output waveforms on CRO and note down 
    the readings.
4. Plot the graphs of input Vs output waveforms for different clipping 
   circuits.
PRECAUTIONS: -
1.Avoid loose and wrong connections.
2.Aviod parallax errors while taking the readings using CRO.

RESULT: -

The characteristics of the different clippers using diodes are verified.

CIRCUIT DIAGRAMS& EXPECTED WAVEFORMS:



@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

                     EXPERIMENT NO:-3NON LINEAR WAVE SHAPING CLAMPERS


AIM :-
          To study and observe the characteristics of different clampers using Diodes.

EQUIPMENT REQUIRED: -

1.   Clampers trainer kit.
2.      Dual trace CRO.
3.      Voltmeter (0-20V) – 1No.
4.      Connecting wires.

THEORY:

     
PROCEDURE:-
1. Connect the circuit as shown in figures (1-5)
2. Switch on the power supply and adjust the output of AF generator
    to 8V (peak to peak)
3. Observe the in put and output waveforms on CRO and note down 
    the readings.
4. Plot the graphs of input Vs output waveforms for different clamping  
   circuits.


PRECAUTIONS: -
1. Avoid loose and wrong connections.
2. Avoid parallax errors while taking the readings using CRO.

RESULT: -

The characteristics of the different clampers using diodes are verified.

CIRCUIT DIAGRAM & EXPECTED WAVEFORMS:





@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

           

EXPERIMENT NO:- 4TRANSISTOR AS A SWITCH



AIM: -
          To study and observe the switching characteristics of a transistor.      

EQUIPMENT REQUIRED :-
1.      Transistor as a switch trainer kit.
2.      Dual trace CRO.
3.      Function generator.
4.      Connecting wires.

THEORY:


DESIGN:

PROCEDURE:-
       1.  Connect the circuit as shown in figure.
       2.  Switch on the power supply and observe the output of the function generator on      CRO. Adjust input signal amplitude such that output signal peak-to peak value is less than the saturation level.                                           
       3.  Observe output waveforms on CRO and note down the readings.
       4.  Plot the graphs between input and output waveforms at a given    
            input frequency.


Calculate the parameters: -
a)      Rise Time (tr)
b)      Fall Time  (tf)
c)      Delay Time (td)
d)     Storage Time (ts)
e)      Turn ON Time (tON)
f)       Turn OFF Time (tOFF





Note:-

Rise Time: - It is the time taken to rise 10% of the Max value of the signal to 90% of the Max value of the signal.
Fall Time: - It is the taken to fall 90% of the Max value of the signal to 10% of the Max value of the signal.
Delay Time: - It is the time taken to rise from 0% to10% of the Max value of the signal.
Storage Time: - It is the time taken to fall from 100% to 90% of the Max value of the signal.
Turn ON Time: - It is the sum of Delay time and Rise time.
Turn OFF Time: - It is the sum of Storage time and Fall time.


PRECAUTIONS: -
1.Avoid loose and wrong connections.
2.Aviod parallax error while taking the readings using CRO.

RESULT: -

The switching characteristics of a transistor  are verified.



Viva Questions:

1.     Differentiate between diode and transistor as a switch?
2.      In which region Transistor acts as a switch?
3.     Define ON Time and OFF Time of the transistor?
4.     Define storage time and Delay time?
5.     Define Rise time and Fall time?

                                                                              


OBSERVATIONS:

Circuit Diagram:


EXPECTED WAVEFORMS:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

EXPERIMENT NO:- 5

STUDY OF LOGIC GATES


AIM:-

1. To study the truth tables of different logic gates.
2. To verify the output of given circuit.
3.      To realize logic gates using universal logic gates (NAND &. NOR).

EQUIPMENT REQUIRED:
            1. Logic Gates Trainer                        -1 No.
            2. Multimeter                          -1 No.
            3. Connecting Wires               -1 No.
THEORY: -

 

PROCEDURE:-

 1.  Connect the inputs to logic gates and verify outputs in accordance with the truth table (AND, OR, NAND. NOR, NOT. EX-OR).
 2.   Note the logic voltage levels at inputs and outputs.
 3.  Connect the logic gates as shown in figure (1) and verify the output. Also, note the        voltages at each point.
 4.   Realize logic gates using universal logic gates as shown in figure (2j


PRECAUTIONS:-
 
 1) Avoid loose and wrong connections.
RESULT: -
1. Truth tables of different it logic gates are verified.
2.  Output of the given circuit is verified.
3.   Logic gates are realized using universal gates.
CIRCUIT DIAGRAM:









@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

 EXPERIMENT NO:- 6STUDY OF FLIP-FLOPS USING I.C'S



AIM:
1.      To study various types of Flip-Flops and verify their truth tables (R-S,J-K,D,T).
2.   To construct D & T Flip-Flops using J-K Flip-Flop.
EQUIPMENT REOUIRED:-
1. Flip-Flop trainer kit.
2. Multimeter- 1 No.
3. Connecting wires.



THEORY:




PROCEDURE:-
1.  Connections are made for R-S flip-flop as shown in figure.
2.  Apply Logic inputs through toggle switches and clock input through pulsar
    (1Hz clock, l0Hz clock). Verify the logic outputs as per the truth table.
3.  Repeat the above procedure for J-K flip-flop.
4.  Using J-K flip-flop, construct D flip-flop and T-flip-flop as shown in figure. Repeat the above procedure to verify truth table.

PRECAUTIONS:-
 
 1) Avoid loose and wrong connections.
 2) Avoid parallax error while taking the readings in CRO.

RESULT:-

1. Various types of flip-flops are studied and truth tables are verified.
2. D and T flip-flops using J-K flip-flop are constructed.



CIRCUIT DIAGRAM:

    @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

                    EXPERIMENT NO:-7                   SAMPLING GATES



AIM:   To observe and draw the output waveforms when the uni-junction sampling gates using 4 diode gates.


EQUIPMENT REQUIRED: -

1) Sampling gate trainer kit.
2) Function generator.
3) Dual trace oscilloscope
4) Connecting wires


      THEORY:

                           
     PROCEDURE:-
   
  1) Connect the circuit as per the circuit diagram shown in figure.
  2) Observe the out put of the sampling pulse generator using
      oscilloscope.
  3) Connect triangular waveform external function generator to the input 
      of the Sampling gate.
  4) Adjust the amplitude and frequency of the input signal until you                               
      Observe stable waveform at the output.

     
   PRECAUTIONS:-
 
 1) Avoid loose and wrong connections.
 2) Avoid parallax error while taking the readings in CRO.



  RESULT:-
                 The output waveforms of sampling gates using diodes were verified and are plotted.

 CIRCUIT DIAGRAM:-


 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@



EXPERIMENT NO:-8ASTABLE MULTIVIBRATOR



AIM: -
          To study the characteristics of Astable Multivibrator using transistors.     


EQUIPMENT REQUIRED :-

1.Astable multivibrator trainer kit (AET-93).
2.Dual trace CRO.
3.Voltmeter (0-20V) – 1NO.
4. Connecting wires. 

 
  THEORY:

DESIGN:



  PROCEDURE:-
1. Connect The Circuit As Shown In Figure 1.
2. Observe The Output Of The Circuit Using Oscilloscope and measure the time  
    Period Of The Signal And Compare It With Theoretical Value By Varying Dc
    source V (5V to 10V) in steps (take minimum two readings).
3. Plot the output waveforms on the graph paper for one set of values.
4. Repeat the steps from 1 to 3 with timing capacitor 0.01μF.
5. Connect the circuit as shown in figure 2.
6. Repeat the steps from 1 to 4.



PRECAUTIONS: -
1.Avoid loose and wrong connections.
2.Aviod parallax errors while taking the readings using CRO.


RESULT: -

The characteristics of Astable multivibrator using transistors are verified.



CIRCUIT DIAGRAM 1:




    CIRCUIT DIAGRAM 2:

   T=2 RC ln (1+VCC/V) V= measured voltage from the circuit at test point.
R= 100 KW
C= 0.1 (or) 0.01 mF.
Vcc = 10 V.
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
  

EXPERIMENT NO:-9MONOSTABLE MULTIVIBRATOR



AIM :-
          To study the characteristics of Monostable Multivibrator using transistors.     


EQUIPMENT REQUIRED :-
1. Monostable multivibrator trainer kit.
2. Dual trace CRO.
3. Connecting wires.


THEORY:-


DESIGN:
       

PROCEDURE:-
1.  Connect the circuit as shown in figure.
2.  Observe the output of the Square wave generator-using oscilloscope.
3.  Connect the output of square oscillator to the trigger input of       monostable circuit and also connect IN4148 diode to the collector of the Q1.observe trigger spikes at Q1 collector using oscilloscope.
               4.  Connect one of the timing capacitor C to the circuit (say C=0.01μF) and    observe the monostable at collector of Q2 using oscilloscope.
            5.  Measure and note the pulse width of output signal and compare with   the theoretical value (T=1.1RC).
            6.  By varying trigger input frequency, observe the corresponding output       waveforms.
            7.  Plot the graph for input and output waveforms at different input                      frequencies.
            8.   Repeat the steps from 4 to 6 for timing capacitor C=0.1μF.


PRECAUTIONS: -
1.Avoid loose and wrong connections.
2.Aviod parallax while taking the readings using CRO.



RESULT: -

The characteristics of Monostable multivibrator using transistors are verified

  CIRCUIT DIAGRAM




@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

10.BISTABLE MULTIVIBRATOR



AIM: -
          To study the characteristics of bistable multivibrator using transistors.     


EQUIPMENT REQUIRED: -

1. Bistable multivibrator trainer kit
2. Dual trace CRO.
3. Connecting wires.


THEORY:-
       
PROCEDURE:-
1. Connect the circuit as shown in Figure.
2. Observe the output of the square wave oscillator-using Oscilloscope.
3. Connect the output of square oscillator to the trigger input Of Bistable Circuit         
   and observe output waveforms using Oscilloscope.
  4. By varying input signal (Trigger) frequency, observe both input and      corresponding output Waveforms Using Oscilloscope.
  5. Plot the graph for input and output waveforms at different input (Trigger)
   frequencies.
    
    

PRECAUTIONS: -
1.Avoid loose and wrong connections.
2.Aviod parallax errors while taking the readings using CRO.


RESULT: -

The characteristics of Bistable Multivibrator using Transistors are verified.


CIRCUIT DIAGRAM:
 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@


EXPERIMENT NO:-11              SCHMITT TRIGGER


AIM:
    To observe and note down the output waveforms of Schmitt trigger using transistors..


EQUIPMENT REQUIRED:
            1.Schmitt Trigger trainer         –1 No.
            2. Dual CRO                            -1 No.
            3. Connecting wires.


THEORY:



PROCEDURE:
Observation of UTP and LTP:

  1. Connect the circuit as per the circuit diagram.
  2. Apply the square wave input of 1 KHz to the circuit.
  3. Switch on the power supply and note down the amplitude and time period for the input square wave.
  4. Observe the output waveform and note down the amplitude and time period.
  5. Keep Re1 and Re2 in minimum condition (extremely in anticlockwise direction)
  6. Initially keep DC source voltage at zero and observe the output of the Schmitt trigger(it will be in low state i.e. around 6V).
  7. Vary the DC source output (i.e input voltage of the Schmitt trigger) slowly from zero.
  8. Note down the input voltage value at which the output of the Schmitt trigger goes to high (UTP). Still increase (upto 10V)the input voltage and observe that the output is constant.
  9. Now slowly decrease the input voltage and note down the value at which the output of the Schmitt trigger comes back to the original state(LTP).
  10. Compare the values LTP and UTP with theoretical values.

Schmitt Trigger as a Squaring circuit:

1.      Connect a triangle wave signal from an external function generator to the input of the level changer.
2.      Connect the output of the level changer to the input of the Schmitt trigger.
3.      Connect CH1 input of CRO to the input signal and CH2 to the output of the schmitt trigger.
4.      Adjust the amplitude of the input signal to such a level that we observe square wave at the output.
5.      Note down the points of input where the output is high (UTP) and low (LTP) and note that both the levels are not one and the same.
6.      Find Re1 value and compare it with the theoretical value.
7.      Repeat the steps 3 to 6 with different types of signals (sine, ramp etc).
8.      From the above observations we can notice that Schmitt trigger converts any arbitrary waveform into a square/Rectangle wave.

   CALCULATIONS:

   Calculation of UTP:

                                  (Vr1 is cut in voltage i.e. 0.6 V)

              (hfe of 2N 2369 is  50)
V’ and Rb is the Thevenins equivalent voltage and resistance between base of Q2 and ground when Q1 is in cut-off.
   
                                               
*   =                                                                         =*                                                                              


  Calculation of LTP:

                       


                        (a=Voltage ratio from collector of Q1 to base of Q2 )


 (Where R is the Thevenins Equivalent       Resistance when  Q2 is in cut-off)                                         

                               

PRECAUTIONS:
      1. Avoid loose and wrong connections.
      2. Avoid parallax errors while taking the readings using CRO.


RESULT:-
                 The output waveforms of Schmitt trigger are are observed.





CIRCUIT DIAGRAM:
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

EXPERIMENT NO:-12UJT RELAXATION OSCILATOR 

AIM:   To observe and draw the output waveforms when the  uni-junction transistor working as a relaxation oscillator.


EQUIPMENT REQUIRED :-
      1).UJT- relaxation oscillator trainer  kit
       2).Dual trace oscilloscope
       3).connecting wires



PROCEDURE:-
     1) Connect the circuit as per the circuit diagram.
     2) Switch on the power supply and observe the output waveforms.
         by using CRO
    3) Note down the amplitude and time period for both the input and
       output waveforms.
    4) Plot the graphs for both the input and outputs by using the above values.



PRECAUTIONS:-
1.Avoid loose and wrong connections.
2.AvoId parallax errors while taking the readings using CRO

.
RESULT:-
                 The output waveforms of UJT when it is acting as relaxation
Oscillators are observed.
CIRCUIT DIAGRAM:



@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

EXPERIMENT NO:-13BOOTSTRAP SWEEP GENERATOR


AIM:
     To observe and note down the output waveforms of bootstrap sweep generator.


EQUIPMENT REQUIRED:
            1.Bootstrap sweep generator trainer –1 No.
            2. Dual CRO-1 No.
2.      Connecting wires.


THEORY:


PROCEDURE:

1. Connect the circuit as per the circuit diagram.
2. Apply the square wave input of 1 KHz to the circuit.
3. Switch on the power supply and note down the amplitude and time period for the input square wave.
4. Observe the output waveform and note down the amplitude and time period.
5. Plot the graphs for the input and output waveforms.


PRECAUTIONS:
      1. Avoid loose and wrong connections.
      2. Avoid parallax errors while taking the readings using CRO.


RESULT:-
                 The output waveforms of Bootstrap sweep generator are observed.
CIRCUIT DIAGRAM:




No comments:

Post a Comment

Note: only a member of this blog may post a comment.